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The need for investigation of the distribution of the natural vibrations of thin 
elastic shells developed after the appearance of [i], in which it was remarked that the spec- 
trum in problems of vibrations has points of bunching, whose existence is due to the spe- 
cific character of the equations. Review [2] sets forth the present state of the theory of 
the distribution of frequencies. The same kind of approach was used in an investigation of 
the spectra of vibrations of orthotropic round cylindrical shells [3]. The hyperbolic-type 
integrals obtained were calculated in a computer. In [4] an investigation was made of the 
vibrations of flat orthotropic shells of arbitrary curvature; the hyperbolic-type integral 
is reduced to an analytical integral by the introduction of an approximate relationship. 
In connection with mechanical applications, the factors of most interest are the initial 
points and the bunching points of the spectrum, as well as their mutual arrangement depend- 
ing on the geometry of the properties of the materials. We consider below the asymptotic 
function of the distribution, the asymptotic density of the natural frequencies, and the 
bunching points of the spectrum. 

i. The equationsof the free vibrationsof flat orthotropic shells are written in the 
form [5 ] 

LI(Cjk)W + Ak~; = phQ2w, L2(cik)~ --  Ahw : O, 
h~ [ ~ o ,  ,. o 4 ] 

L1 (c~h) = T f  Czl~z4 + 2 (c1~-t-2c33) Oz--~oy 2 + c ~  , 

[ 04 -- el2 -- 2012033 04 @4] 
L~ (~j~) ,, (~1,~ _ ,~) %~ a~o~, ~ + , ~  , 

Ah = I 0 2 l 0 2 

(i.i) 

where Cjk(J, k = I, 2), c3a are the elastic constants of the material, Rt, R2 are the radii 
of curvature of the shell. 

The asymptotic formula for the frequencies of the vibrations of shells, rectangular in 
a plan view, has the form [6] 

Q2B~ph-2 = c~k4m _~_ 2 (c12 2 2  • m Xk~)z/[Cllk m4 .q_ elle22--C'212-}-2e1"~C332 2k.'kn -t- c~k~] -2C 2C33 ) k,,kn + c.2.,k~ + -}- 
�9 %3 (1.2) 

km = m,~R/a, kn = nna/b, ~4 = 12R4 (c11% - ~2) 

where a, bare thedimensions of the shell in a plan view, [Xl ~ I, since the coordinate axes 
can always change places. The applicability of formula (1.2) for determination of the fre- 
quencies of vibrations was considered in [6], where the conditions for the degeneration of 
the dynamic edge effect are determined. For freely supported shells, formula (1.2) is exact. 

In the plane of the wave numbers km, k n we introduce the system of coordinates 
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k m = r c o s O ,  k . - - - - r s i n O ( r ~ O , O ~ O ~ n / 2 ) .  (1.3) 

We substitute the expressions for km,  k n into (1.2). From the relationship obtained we ob- 
tain a formula for r, which, after still another substitution $ = sina0 (0~ ~ I), assumes 
the form 

," = {~' V , o * w ,  - t i - ~. ( ~ - z)  t V  (w ~  w , )  P ' L  

W l  = c n  (1 - -  ~)2 _]_ 2 (C12 "-~ 2Css ) ~ (t  - -  ~) + Cm~ 2, CO = Tt4ph-*g~2/u 2, 

W 2 = ell ( i  - -  ~)2 ._~ C11022 - -  C22 - -  2C12033 ~ ( t  ~) "~ C22~ 2. 
C33 

(1.4) 

In the plane kmkn, the given formula determines the region of wave numbers kmkn, correspond- 
ing to identical values of m. The sense of the value of r is such that the expression under 
the radical sign in the shaped brackets in (1.4) must be nonnegative, if only for one value 
of m from the integral [0, i] . The minimal value of ~ with which this condition is satis- 
fied gives us the initial point of the spectrum of the problem, i.e., the question of de- 
termining the start of the spectrum comes down to investigation of the function 

I ( o ,  ~) = o = w ,  - [ l  - ! ( l  - x ) l  ~, 

having a second order with respect to $ and depending in a complex manner on the parameters 
of orthotropy Cjk , csa and the parameter • characterizing the geometry of the shell. 

Z. The number of natural vibrations (less than the given value of mo) is defined, 
following R. Courant (see [2] ), as the ratio of the area S in the plane of the wave numbers 
kmkn, inside of which ~ ~ ~0, to the area of one cell AkmAk n 

N (o.))~ Akrahk n dkmdk n. ( 2 . 1 )  
8 

After the introduction of a new system of coordinates for km, k n (1.3), we integrate expres- 
sion (2.1) with respect to r 

02(o) 
ab 

N ( o ) = ~  S r2dO" 
01(0)) 

(2.2) 

We fs the asymmetric density of the natural frequencies, differentiating (2.2) with re- 
spect to 

M (co) = d~V (o) ~b 
�9 d o )  =~(01(o) 

dO~ ' r 2 (0 ,  0,) dO~[ dr ~ (o, O) dO - - r  2 (co, 01)~-  -r- 
do -d-oJ (2.3) 

We substitute into this the expression for r from (1.4). The terms outside the integral 
sign here are equal to zero. The formula (2.3) assumes the form 

a~(o) 
= ab W~ ]112 (2.4) 

The integral limits were determined from the conditions of the nonnegative character of the 
expressioms under the radical sign in I, which is equivalent to satisfaction of the rela- 
tionship f(m, ~) ~>0. The functions W~, W2 for all the parameters of the orthotropy with 
0 ~ ~ i  are positive. The bunching points of the spectrum are determined from the condi- 
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The necessary requirement for this is the equality 

f , ( o ,  ~) = ~(i - ~ ) { o ~ w ~  - [ i  - ~(i - z ) l  ~} = 0 .  (2.5) 

In [4], the expression for the integration limit of (1.4) was replaced by an approximate 
expression, thanks to which the integral I can be expressed in terms of total elliptical 
integrals of the first kind in the Legendre form. 

3. For the parameters of the orthotropy entering into (2.5) through WI, the following 
possible relationships can be representedz 

if c22 > c~, then 

C33, C39<~C33<~C33, C33>/C83; (3.1) 
i f  c z= > c = = ,  t h e n  

C33~ C33 C 3 3 ~ C 3 3 ,  C 8 3 ~ C 3 3 ~  ~ C 3 3 '  

where 

(3.2) 

* C11r162 ** C11C22--C~ 
CS3 = 2(C22q_C12) ' C33 --~ 2(Cli_}_C12)" 

Let the parameters of the orthotropy satisfy the first relationship from (3.1). 
curvature of the shell X has a significant effect on the spectrum of the problem. 
on the curvature of the shell there are three possible different cases. 

Io In the first case 

2C22C33 
7.9 ~ = ~l- 

CliO22 -- ci2 -- 2ci2c33 

The 

Depending 

(3~ 

The expression in the right-hand part is greater than zero, but less than or equal to i. The 
condition f(~, ~) i> 0, from which we seek the origin of the spectrum, starts to be satisfied 
with the frequency ~ = ~,, where 

[ 11 33- ( 11 ,~ ~ - ~. 3~) , cii%3]I '/2. ( 3 . 4 )  = 14c33 c c 7. ~ -  c c - - c  ~ - -  9c ~c "%Jr- 

(c~1%2- oh) [(c.  + 2%~), - o,1~.) ! 

1 5 5  



With a given value of m, the equation f(m, ~) = 0 has a multiple root E, = ~a in the 
interval of changes 0~ $~i. At all remaining points $ ~ [0, I], the function f(m,~) < 0. 
With calculation of r using formula (1.4), as well as with determination of the density of 
the natural frequencies using formula (2.4), we need the limits of change in the variable 
~, Joe., its values for which f(m, ~)~ 0. We denote them by ~,(m) and ~a(m). We also 

I c l / 2  * -  1/2 introduce the notation ~=1%], ~, ~ = ~ / c n -  

The limits of change in the variable $ are the following: 

o ~< co,, M(m) = O, 

~ ,  <~ co ~< o)l, =1(o)) = ~.,, as(m) = h ,  

f.l) 1 ~ (1} ~ 0)2, (~l(f.O) = O, (~2((1)) = ~,>, 

co >f o~, (~((~) = O, (~ (o )  = 1. 

To determine the bunching points of the spectrum we use the Cauchy criterion for the con- 
vergence of improper integrals. The integral I diverges with the following values of the 
parametert m = m,, m = ~a. With these values of e, Eq. (2.5) has a multiple root at 0 or 
at I, and these values of the variable ~ are the integration limits. If, in the first re- 
lationship of (3.1), the equality is satisfied, then, the expression in the right-hand part 
of (3.3) is equal to I, if the equality is satisfied in (3.3), then m, = ~,. 

2. Let now the curvature of the shell satisfy the relationship 

C11C22__C12__2012CSB �9 

The spectrum starts from the point m = m, 

o) < o1, M(m) = O, 

o~ ~< o) ~< o)~, ~,(o)) = O, ~2(o)) = ~,  

The bunching point of the spectrum with m = mao 

3. For shells with a negative Gaussian curvature (X< 0), 
at the point m = O. $ is varied within the limits 

the start of the spectrum 

0 < (o ~< ~o,, =~(o)) = L ,  =~(o)) = h ,  
o)~ < (~ ~< o).2, =~(~) = O, o:~(o)) = ~,  

o~ t> ms, (z~(o) = 0 ,  (~(o)) = i .  (3.5) 

The bunching point of the spectrum 

O) ~ (DI, O) -~- (a) 2, 

For the parameters of the orthotropy, let us examine the second relationship from 
(3.1). The distribution of the natural frequencies for shells with a positive Gaussian 
curvature starts from a frequency m = e, 

(o ~< ~1, M(m) = O, 

Bunching of natural frequencies with m : ~a. With X < 0, 

(3.6) 

(3.7) 

the spectrum is analogous to the 
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spectrum of the problem whose basic characteristics are given by formulas (3.5), (3.6). 

Let now, for the coefficients of the orthotropy, the third relationship from (3.1) be 
satisfied, and let the curvature of the shell satisfy the condition 

2CllC3 3 = X~, ( 3 . 8 )  

where, inprinciple, three cases are possible. Shells with a curvature satisfying the given 
condition can be of either positive or negative Gaussian curvature. With X ~>0, the initial 
point of the spectrum m = mz 

(~, <~ o) ~< ~ ,  ~ ( ~ )  = O, o~,(~) = h ,  

~ ~< co ~< o) . ,  / =~ ((o) = O, o:~ (co) = ~ ,  

~> (o . ,  (~(r = O, ~ ( ~ o )  = i .  

With ma<~m~,, the interval of change in the variable ~ consists of two; correspondingly, 
the integral I is divided into two; in the first, the integration is carried out from 0 to 
~ and, in the second, from ~= to I. With m = m, where ~, is determined by formula (3.4), 
Eq. (2.5) has a multiple root ~ = ~a in the interval. With this value of the frequency, the 
integral I diverges. In the sense of a princip~l value, it does not exist. For shells with 
a negative Gaussi~n curvature with X < 0~ 

0 < (0 ~< (0~, ~ ( ~ )  = h ,  (~((~) = ~=, 

0)1 ~ o) ~ (i)2, O~l((.t) ) : O, (~2((1)) - -  ~2, 

(0~ <~ o) <~ o) . ,  / ~ (co) = O, ~.. (~)  = ~1, 
( 0:~ (co) = ~,~, 0:.. (co) = 1, 

The bunching points of the natural frequencies 

O) ~ 0)i, CO ~ ~,. 

If the equality is satisfied in (3.8), then m2 = m,; if the equality is satisfied in the 
third relationship from (3.1), then, in (3.8) the right-hand part is equal to i. We then 
consider only the following case (compare the limitations (3.8); 

2 ~ C11C22--C12--2C12C33 
2C11%3 

Analogous to the preceding, here there are two possible cases. If X>~0, then, with m~ml, 
M(m) = 0, and, further on, as in (3.7). For shells with a negative Gaussian curvature, for- 
mulas (3.5)and (3.6) are valid. 

It was postulated above that ca~ > c~. We now assume that c~ > cad, i.e., for the 
coefficients of the orthotropy, the relationships (3.2) are possible, which are obtained 
from the conditions (3.1) if c~ and ca= change places in them. The results of an analysis, 
obtained with relationships (3.1), will hold also with relationships (3.2) if, with a curva- 
ture IXl~(c~2/c~:)~/2, ~ and ~2 change places in all the expressions given above. This is 
connected with the fact that, with c2= > c~, it is always true that m~ < ~2. But, with 
c~2 < ci: and IX[ ~ (c22/c~I) ~/a, the condition ~ < m2. If IXI ~(ca=/czl) I/2, all the re- 
sults are carried over without change. 

And finally, if c11 = c22 = c, then, in (3.1), (3.2) the equality c~3 = Cs3 = (c -- 
C~2)/2 is satisfied, i.e., for the coefficients of the orthotropy, instead of three relation- 
ships, only two relationships need be considered 
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TABLE 

Sta~ of Bunching 
c .  X 

spectrum points 

Z~ l l  r r r 

z~O 0 e,, w, 

C;3~Cs 3 ~ C 3 3  ~ 0  (01 0)o 

x<O 0 r o)., 

z~O ~, 

z>~o 

Z~<0 
7.~<Z, 

(01 

0.)i, 0 ) ,  

(0 2 

0)1, (.0 2 

J 

aO 

2 j  
2O 

I 
r -~ . j . . . r - ' ' ~ . ,  t ' ' / ' ' L J  LJ  I-J -- LJ 

r ' l  I I P ' t .  . " '~ ._ . r  

.$._.r_ ~ r I 

I r 
3 

�9 I| L L1 

L., L 
i "~ 'z  I 

5 
i i , r j  , i i  
LJ  LJ LJ  I 

I ' i I  I "  I L--. 
..I L - - J  L ' LJ  

r 

Fig. 4 

For  t h e  f r e q u e n c i e s  ~ ,  and ~a we have  ~ , ~ 2 .  The e q u a l i t y  h e r e  i s  s a t i s f i e d  o n l y  f o r  
s h e l l s  w i t h  a c u r v a t u r e  IXI = l ,  i n  p a r t i c u l a r ,  f o r  a s p h e r i c a l  p a n e l .  

4. Relationships (3.1) between the parameters of the orthotropy in terms of technical 
constants can be written in the form 

G ~< EI/2(E1/Ez q- ~1), EJ2(E~/E2 q- v0 <~ G ~ E1/2(1 q- vO, ( 4 . 1 )  
G > / E J 2 ( I  q- v0. 

R e l a t i o n s h i p s  ( 3 . 2 )  a r e  w r i t t e n  a n a l o g o u s l y ;  i n  w r i t i n g  (4 .1 )  i t  i s  o n l y  n e c e s s a r y  to e x -  
change  t h e  p l a c e s  o f  t h e  s u b s c r i p t s  1 and 2. A r t i c l e  [7] g i v e s  m a t e r i a l s  whose c h a r a c t e r i s t i c s  
s a t i s f y  s i m i l a r  r e l a t i o n s h i p s .  I t  a l s o  g i v e s  t h e  l i t e r a t u r e  r e f e r e n c e s  f rom which  t h e s e  d a t a  
were  t a k e n .  R e l a t i o n s h i p s  o f  t h e  t y p e  o f  ( 3 . 1 )  and ( 3 . 2 )  do n o t  go beyond  t h e  l i m i t a t i o n s  
imposed  on t h e  c o e f f i c i e n t s  o f  t h e  o r t h o t r o p y  i n  t h e  t h e o r y  o f  e l a s t i c i t y .  

The p a r a m e t e r s  o f  t h e  o r t h o t r o p y  o f  t h e  m a t e r i a l  and t h e  g e o m e t r y  o f  s h e l l s  c an ,  i n  
p r i n c i p l e ,  be  i n t e r c o n n e c t e d  in  a n o t h e r  form,  e . g . ,  

e33 ~ e~, cz ~ c3~ ~ exz, c83 1> c~x, 
__ C 2 

Cl lC22  1 # . C 1 1 C 2 9 -  C212 (z~O, c ~ c . ) .  c~ = z (%2 + c12x) ~,  c ~  - -  2 (c2~_, L c~2) 
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Each relationship corresponds to its own type of spectrum. The results obtained 
characterize the effect of the coefficients of the system (I.i) on the spectrum of the prob- 
lem. Table i gives asymptotic expressions for the initial points and the bunching points of 
the spectrum for the case c== > c~. If c== < c,~, c33 and C3~ must change place in Table 
i. m~ and m2 also change place with IXI > (c==/c**) I/2. Figures 1-3 give the asymptotics 
of all the types of spectra characteristic for orthotropic shells. The curves shown by the 
solid lines for M(m) are characteristic also for isotropic shells, the dashed lines are 
characteristic only for orthotropic shells; the notation is the same in Table i and Figs. 
1-3. Using the table, it is easy to determine which spectrum corresponds to which relation- 
ship between the parameters of the orthotropy and the geometry. The frequencies were calcu- 
lated using formula (1.2); they were then grouped into intervals with a spacing of 0.05. 
All the calculations were made with the following values of the parameters of the orthotropy: 
c~, = i, c== = 0.25, cz= = 0.i, and with three values of c33 = 0.05, 0.2, 0.5. In this case, 
one of the conditions (3.1) was satisfied consecutively. Here, the parameters of the ortho- 
tropy are referred to a maximal value, correspondingly, of the frequency in Figs. 4-6 ~ = 
wc?]/2" In Fig. 4, curves i, 2 characterize the distribution of the natural frequencies of 
a cylindrical shell with a ratio I/R = 2 and c33 = 0.2; the lower curve corresponds to a shell 
with R/h = i00, the upper with R/h = 400; curve 3 corresponds to a shell with a curvature 
X = 1/2, a/b = i, i.e., with our parameters of the orthotropy; the bunching point m, = m= = 
! coincides with the start of the spectrum. This can be seen well on the curve, where the 
maximum is equal to j = 96. The calculations were made with cs3 = 0.2. Figure 5 gives the 
distributions of the frequencies of shells with the following parameters= X = 1/3, R/h = 
1600; a/b = I, curve i with c33 = 0.2; curve 2 with c3s = 0.5; the point of bunching is well 
expressed with m = i. The density of the natural frequencies for shells with a negative 
Gaussian curvature is shown in Fig. 6 by the curve i, where X = --i, R/h = 6400; a/b = i, 
c33 = 0.5; here there is also given the distribution of the frequencies for a spherical 
panel (X = I, curve 2) with the parameters R/h = 6400, a/b = i, cas = 0.5. 
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Formula (2.4) gives the asymptotic distribution of the density of the natural frequen- 
cies. The results of a numerical calculation of the initial part of the spectrum using 
formula (1.2) coincide with the conclusions drawn with an analysis of the asymptotic density. 
By varying the geometry of the shell and the mechanical properties of the material, it is 
possible to control the spectrum, shifting either the start of the spectrum or the bunching 
points out of the undesirable region. In this case, there is a decrease in the possibility 
of resonance phenomena. 
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